ত্রিকোণমিতি (HSC)
- sin C + sin D = 2 sin
cosC + D 2 C − D 2 - sin C
sin D = 2 cos− sinC + D 2 C − D 2 - cos C + cos D = 2 cos
cosC + D 2 C − D 2 - cos C
cos D = 2 sin− sinC + D 2 D − C 2 - sin (A+B) = sinA cosB + cosA sinB
- sin (A
B) = sinA cosB− cosA sinB− - cos (A+B) = cosA cosB
sinA sinB− - cos (A
B) = cosA cosB + sinA sinB− - 2 sinA cosB = sin(A+B) + sin(A
B)− - 2 cosA sinB = sin(A+B)
sin(A− B)− - 2 cosA cosB = cos(A+B) + cos(A
B)− - 2 sinA sinB = cos(A
B)− cos(A+B)− - tan (A+B) =
t a n A + t a n B 1 − t a n A t a n B - tan (A
B) =− t a n A − t a n B 1 + t a n A t a n B - cot (A+B) =
c o t A c o t B − 1 c o t B + c o t A - cot (A
B) =− c o t A c o t B + 1 c o t B − c o t A - sin (A+B) sin(A
B) =− =s i n 2 A − s i n 2 B c o s 2 B − c o s 2 A - cos (A+B) cos(A
B) =− c o s 2 A − s i n 2 B = c o s 2 B − s i n 2 A s i n 2 A = 2 s i n A c o s A = 2 t a n A 1 + t a n 2 A c o s 2 A = c o s 2 A − s i n 2 A = 1 − 2 s i n 2 A = 2 c o s 2 A − 1 = 1 − t a n 2 A 1 + t a n 2 A t a n 2 A = 2 t a n A 1 − t a n 2 A s i n 3 A = 3 s i n A − 4 s i n 3 A c o s 3 A = 4 c o s 3 A − 3 c o s A t a n 3 A = 3 t a n A − t a n 3 A 1 − 3 t a n 2 A ; যেখানে R হলো পরিবৃত্তের ব্যাসার্ধ।a s i n A = b s i n B = c s i n C = R - যেকোন ত্রিভুজের ক্ষেত্রে: a = b cosC + c cosB, b = c cosA + a cosC, c = b cosA + a cosB
- যেকোন ত্রিভুজের ক্ষেত্রে: cosA =
, cosB =b 2 + c 2 − a 2 2 b c , cosC =c 2 + a 2 − b 2 2 c a a 2 + b 2 − c 2 2 a b - ত্রিভুজের ক্ষেত্রফল: ∆ =
bc sinA =1 2 ca sinB =1 2 ab sinC =1 2 ; যেখানে,√ s ( s − a ) ( s − b ) ( s − c ) s = a + b + c 2 ,s i n A 2 = √ ( s − b ) ( s − c ) b c ,s i n B 2 = √ ( s − c ) ( s − a ) c a s i n C 2 = √ ( s − a ) ( s − b ) a b ,c o s A 2 = √ s ( s − a ) b c ,c o s B 2 = √ s ( s − b ) c a c o s C 2 = √ s ( s − c ) a b ,t a n A 2 = √ ( s − b ) ( s − c ) s ( s − a ) ,t a n B 2 = √ ( s − c ) ( s − a ) s ( s − b ) t a n C 2 = √ ( s − a ) ( s − b ) s ( s − c )
.